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Abstract. shacl (Shapes Constraint Language) is a specification for
describing and validating RDF graphs that has recently become a W3C
recommendation. While the language is gaining traction in the industry,
algorithms for shacl constraint validation are still at an early stage. A
first challenge comes from the fact that RDF graphs are often exposed
as sparql endpoints, and therefore only accessible via queries. Another
difficulty is the absence of guidelines about the way recursive constraints
should be handled. In this paper, we provide algorithms for validating a
graph against a shacl schema, which can be executed over a sparql end-
point. We first investigate the possibility of validating a graph through
a single query for non-recursive constraints. Then for the recursive case,
since the problem has been shown to be NP-hard, we propose a strategy
that consists in evaluating a small number of sparql queries over the
endpoint, and using the answers to build a set of propositional formu-
las that are passed to a SAT solver. Finally, we show that the process
can be optimized when dealing with recursive but tractable fragments
of shacl, without the need for an external solver. We also present a
proof-of-concept evaluation of this last approach.

1 Introduction

shacl (for SHApes Constraint Language),3 is an expressive constraint lan-
guage for RDF graph, which has become a W3C recommendation in 2017. A
shacl schema is a set of so-called shapes, to which some nodes in the graph
must conform. Figure 1 presents two simple shacl shapes. The left one, called
:MovieShape, is meant to define movies in DBPedia. The triple :MovieShape
sh:targetClass dbo:Film is the target definition of this shape, and specifies that
all instances of the class dbo:Film must conform to this shape. These are called
the target nodes of a shape. The next triples specify the constraints that must be
satisfied by such nodes, namely that they must have an Imdb identifier, and that
their directors (i.e. their dbo:director-successors in the graph), if any, must con-
form to the shape :DirectorShape. The rightmost shape, called :DirectorShape,
is meant to define movie directors in DBPedia. It does not have a target def-
inition (therefore no target node either), and states that a director must have
exactly one birth date, and can only direct movies that conform to the shape
:MovieShape.
3 https://www.w3.org/TR/shacl/

https://www.w3.org/TR/shacl/
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:MovieShape
a sh:NodeShape ;
sh:targetClass dbo:Film ;
sh:property [

sh:path dbo:imdbId ;
sh:minCount 1 ] ;

sh:property [
sh:path dbo:director ;
sh:node :DirectorShape ] .

:DirectorShape
a sh:NodeShape ;
sh:property [

sh:path dbo:birthDate;
sh:minCount 1 ;
sh:maxCount 1 ];

sh:property [
sh:inversePath dbo:director ;
sh:node :MovieShape ] .

Fig. 1: Two shacl shapes, about movies and directors
:PulpFiction a dbo:Film .
:PulpFiction dbo:imdbId 24451 .
:PulpFiction dbo:director :QuentinTarantino .
:QuentinTarantino dbo:birthDate "1963 -03 -27" .

:Brazil a dbo:Film .
:Brazil dbo:imdbId 15047 .
:Brazil dbo:director :TerryGilliam .

:CitizenKane dbo:director :OrsonWelles .
Fig. 2: Three rdf graphs, respectively valid, invalid and valid against the shapes
of Figure 1

The possibility for a shape to refer to another (like MovieShape refers to
:DirectorShape for instance), or to itself, is a key feature of shacl. This allows
designing schemas in a modular fashion, but also reusing existing shapes in a
new schema, thus favoring semantic interoperability.

The shacl specification provides a semantics for graph validation, i.e. what
it means for a graph to conform to a set of shapes: a graph is valid against a set
of shapes if each target node of each shape satisfies the constraints associated to
it. If these constraints contain shape references, then the propagated constraints
(to neighbors, neighbors of neighbors, etc.) must be satisfied as well.

Unfortunately, the shacl specification leaves explicitly undefined the seman-
tics of validation for schemas with circular references (called recursive below),
such as the one of Figure 1, where :MovieShape and :DirectorShape refer to
each other. Such schemas can be expected to appear in practice though, either
by design (e.g. to characterize relations between events, or a structure of un-
bounded size, such as a tree), or as a simple side-effect of the growth of the
number of shapes (like an object-oriented program may have cyclic references as
its number of classes grows). A semantics for graph validation against possibly
recursive shapes was later proposed in [11] (for the so-called “core constraint
components” of the shacl specification). It complies with the specification in
the non-recursive case. Based on to this semantics, the first graph in Figure ??
is valid against the shapes of Figure 1. The second graph is not, because the
director misses a birth date. The third graph is trivially valid, since there is no
target node to initiate validation.

Negation is another important feature of the shacl specification (allowing
for instance to state that a node cannot conform to two given shapes at the
same time, or to express functionality, like “exactly one birth date” in Figure 1).
But as shown in [11], the interplay between recursion and negation makes the
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graph validation problem significantly more complex (NP-hard in the size of the
graph, for stratified constraints already).

As shacl is gaining traction, more validation engines become available.4
However, guidance about the way graph validation may be implemented is still
lacking. In particular, to our knowledge, existing implementations deal with re-
cursive schemas in their own terms, without a principled approach to handle the
interplay between recursion and negation.

Another key aspect of graph validation is the way the data can be accessed.
rdf graphs are generally exposed as sparql endpoints, i.e. primarily (and some-
times exclusively) accessible via sparql queries. This is often the case for large
graphs that may not fit into memory, exposed via triple stores. Therefore an
important feature of a shacl validation engine is the possibility to check con-
formance of a graph by issuing sparql queries over it. This may also be needed
when integrating several data sources not meant to be materialized together, or
simply to test conformance of data that one does not own.

Several engines can already perform validation via sparql queries for frag-
ments of shacl but, to our knowledge, not in the presence of recursive con-
straints.5 This should not come as a surprise: as will be shown in this article,
recursive shapes go beyond the expressive power of sparql, making validation
via sparql queries significantly more involved: if the schema is recursive, it is
not possible in general to retrieve target nodes violating a given shape by issuing
a single sparql query. This means that some extra computation (in addition to
sparql query evaluation) needs to be performed, in memory.

This article provides a theoretical and empirical investigation of graph vali-
dation against (possibly recursive) shacl schemas, when the graph is only ac-
cessible via sparql queries, and based on the semantics defined in[11]. First, we
show that validation can be performed via sparql queries only (without extra
computation) if the schema is non-recursive, and that some recursive fragments
can (in theory) be handled this way if one extends sparql with fixed-point it-
eration. We also show that this strategy cannot be applied for arbitrary shacl
schemas.

Therefore we investigate a second strategy, allowing some in-memory compu-
tation, while still accessing the endpoint via queries only. Because the validation
problem is NP-hard (in the size of the graph) for the full language, we first define
a robust validation approach, that evaluates a limited number of queries over
the endpoint, and reduces validation to satisfiability of a propositional formula,
potentially leveraging the mature optimization techniques of SAT solvers. We
then focus on recursive but tractable fragments of shacl. For these, we devise
an efficient algorithm that relies on the same queries as previously, but performs
all the necessary inference on the fly. Finally, we describe a proof-of-concept eval-
uation of this last approach, performed by validating DBPedia against different
schemas, and, for the non-recursive ones, comparing its performance with full
delegation to the endpoint.

4 https://w3c.github.io/data-shapes/data-shapes-test-suite/
5 with the exception of Shaclex [5], which can handle recursion, but not recursion and
negation together in a principled way.

https://w3c.github.io/data-shapes/data-shapes-test-suite/
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Organization. Section 2 introduces preliminary notions and Section 3 presents
the graph validation problem. Section 4 studies the usage of a single query,
whereas Sections 5 and 6 focus on the strategy with in-memory computation, first
for the full language, and then for recursive but tractable fragments. Section 7
provides empirical results for this algorithm and full delegation, while Sections 8
and 9 discuss related work and perspectives. Due to space limitations, proofs of
propositions are provided in the extended version of this paper, available at [? ].

2 Preliminaries

We assume familiarity with rdf and sparql. We abstract away from the concrete
rdf syntax though, representing an rdf graph G as a labeled oriented graph
G = 〈VG , EG〉, where VG is the set of nodes of G, and EG is a set of triples of the
from (v1, p, v2), meaning that there is an edge in G from v1 to v2 labeled with
property p. We make this simplification for readability, since distinctions such
as rdf term types are irrelevant for the content of this paper.

We use JQKG to denote the evaluation of a sparql query Q over an rdf
graph G. As usual, this evaluation is given as a set of solution mappings, each of
which maps variables of Q to nodes of G. All solution mappings considered in this
article are total functions over the variables projected by Q. We use {?x1 7→ v1,
. . . , ?xn 7→ vn} to denote the solution mapping that maps ?xi to vi for i ∈ [1..n].
However, if Q is a unary query (i.e. if it projects only one variable), we may also
represent JQKG = {{?x 7→ v1}, .., {?x 7→ vm}} as the set of nodes {v1, .., vm}.

shacl. This article follows the abstract syntax for shacl core constraint com-
ponents introduced in [11]. In the following, we review this syntax and the as-
sociated semantics for graph validation.

A shape schema S is represented as a triple 〈S, targ,def〉, where S is a set of
shape names, targ is a function that assigns a target query to each s ∈ S, and
def is a function that assigns a constraint to each s ∈ S.

For each s ∈ S, targ(s) is a unary query, which can be evaluated over the
graph under validation in order to retrieve the target nodes of s. The shacl
specification only allows target queries with a limited expressivity, but for the
purpose of this article, targ(s) can be assumed to be an arbitrary unary sparql
query. If a shape has no target definition (like the shape :DirectorShape in
Figure 1), we use an arbitrary empty sparql query (i.e. with no answer, in any
graph), denoted with ⊥.

The constraint def(s) for shape s is represented as a formula φ verifying the
following grammar:

φ ::= > | s | I | φ ∧ φ | ¬φ | ≥n r.φ | EQ(r1, r2)

where s is a shape name, I is an IRI,6 r is a shacl path7, and n ∈ N+. As
syntactic sugar, we use φ1 ∨ φ2 for ¬(¬φ1 ∧ ¬φ2), ≤n r.φ for ¬(≥n+1 r.φ),

6 More exactly, I is an abstraction, standing for any syntactic constraint over an rdf
term: exact value, datatype, regex, etc.

7 shacl paths are built like sparql property paths, but without the NegatedProper-
tySet operator
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[>]G,v,σ = 1
[¬φ]G,v,σ = 1− [φ]G,v,σ

[φ1 ∧ φ2]G,v,σ = min{[φ1]G,v,σ, [φ2]G,v,σ}
[EQ(r1, r2)]G,v,σ = 1 iff {v′ | (v, v′) ∈ Jr1KG} = {v′ | (v, v′) ∈ Jr2KG}

[I]G,v,σ = 1 iff v is the IRI I
[s]G,v,σ = 1 iff s(v) ∈ σ

[≥n r.φ]G,v,σ = 1 iff |{v′ | (v, v′) ∈ JrKG and [φ]G,v
′,σ = 1}| ≥ n

Table 1: Evaluation of constraint φ at node v in graph G given total assignment
σ. We use (v, v′) ∈ JrKG to say that v and v′ are connected via shacl path r.

and =n r.φ for (≥n r.φ) ∧ (≤n r.φ). A translation from shacl core constraint
components to this grammar and conversely can be found in [12].

Example 1. The shapes of Figure 1 are abstractly represented as follows:

targ(:MovieShape) = SELECT ?x WHERE {?x a dbo:Film}
targ(:DirectorShape) = ⊥
def(:MovieShape) = (≥1 dbo:imdbId.>) ∧ (≤0 dbo:director.¬:DirectorShape)
def(:DirectorShape) = (=1 dbo:birthDate.>) ∧ (≤0 dbo:director.¬:MovieShape)

The dependency graph of a schema S = 〈S, targ,def〉 is a graph whose nodes are
S, and such that there is an edge from s1 to s2 iff s2 appears in def(s1). This
edge is called negative if such reference is in the scope of at least one negation,
and positive otherwise. A schema is recursive if its dependency graph contains
a cycle, and stratified if the dependency graph does not contain a cycle with at
least one negative edge. In Example 1, we see that shapes are recursive, since
:MovieShape references :DirectorShape and vice-versa. Since this reference is in
the scope of a negation, the schema is not stratified.

Semantics. Since the semantics for recursive schemas is left undefined in the
shacl specification, we use the framework proposed in [11]. The evaluation of a
formula is defined with respect to a given assignment, i.e. intuitively a labeling
of the nodes of the graph with sets of shape names.

Formally, an assignment σ for a graph G and a schema S = 〈S, targ,def〉
can be represented as a set of atoms of the form s(v) or ¬s(v), with s ∈ S and
v ∈ VG , that does not contain both s(v) and ¬s(v) for any s ∈ S or v ∈ VG . An
assignment σ is total if for every s ∈ S and v ∈ VG , one of s(v) or ¬s(v) belongs
to σ. Otherwise (if there are s, v such that neither s(v) not ¬s(v) belong to σ),
the assignment is partial.

The semantics of a constraint φ is given in terms of a function [φ]G,v,σ, for a
graph G, node v and assignment σ. This function evaluates whether v satisfies
φ given σ. This semantics depends on which type of assignments is considered.
If we only consider total assignments, then [φ]G,v,σ is always true or false, and
its semantics is defined in Table 1.

We remark that [11] provides a semantics in terms of partial assignments. In
this case, the inductive evaluation of [φ]G,v,σ is based on Kleene’s 3-valued logic.
We omit this definition for simplicity, since it is not required in this article, and
refer to [11] instead.
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3 Validation and tractable fragments of shacl

In this section, we define what it means for a graph to be valid against a schema.
Then we identify tractable fragments of shacl (including some recursive ones)
for which we will introduce either a full sparql rewriting (in Section 4) or a
validation algorithm (in Section 6).

Validation problem. A graph G satisfies a schema S if there is a way to assign
shapes names to nodes of G such that all targets and constraints in S are satisfied.
For instance, in Figure ?? (first graph), one may assign shape :MovieShape to
node :PulpFiction, and shape :DirectorShape to node :QuentinTarantino while
satisfying all targets and constraints. Since we consider two kinds of assignments
(total and partial), we also define two types of validation.

Definition 1. A graph G is valid against a shape schema S = 〈S, targ,def〉
with respect to total (resp. partial) assignments iff there is a total (resp. partial)
assignment σ for G and S that verifies the following, for each shape name s ∈ S:
– s(v) ∈ σ for each node v in Jtarg(s)KG, and
– if s(v) ∈ σ, then [def(s)]G,v,σ = 1, and if ¬s(v) ∈ σ, then [def(s)]G,v,σ = 0.

The first condition ensures that all targets of a shape are assigned this shape, and
the second condition that the assignment is consistent w.r.t. shape constraints.

We note that a total assignment is a specific case of partial assignment. So
if G is valid against S with respect to total assignments, it is also valid with
respect to partial assignments. The converse does not necessarily hold though.
But as we see below, it holds for all the tractable fragments considered in this
paper. We use this property several times in the following sections.

Tractable fragments of shacl. As is usual in the database literature, we
measure complexity in the size of the graph only (data complexity), and not of
the schema, given that the size of the graph is likely to grow much faster. The
Validation problem then asks, given a graph G and a fixed schema S, whether G
is valid against S with respect to total assignments. We also define the Partial-
Validation problem, by focusing instead on partial assignments. Unfortunately,
both problems have been shown to be NP-complete in [11] for full shacl.

Two tractable recursive fragments of shacl were identified in [11] and [?
] though. The first fragment simply disallows negated constraints, and allows
disjunction (∨) as a native operator. We call this fragment L+

∨ below. The sec-
ond fragment allows all operators, but restricts interplay between recursion and
negation. Due to the lack of space, we refer to [? ] for a formal definition. We
call this fragment Ls below. Finally, we also consider non-recursive shapes, the
only fragment whose semantics is fully described by the shacl specification. We
call this fragment Lnon-rec below. All these fragments share a property that is
key for the correctness of our validation algorithms:

Proposition 1. The Validation and Partial-Validation problems coincide for
L+
∨ , Ls and Lnon-rec schemas.

Complexity. Table 2 summarizes data complexity for full shacl and all three
fragments. All results are new (to our knowledge), aside from the one for full
shacl, borrowed from [11]. Proofs are provided in the online appendix.
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Lnon-rec L+
∨ Ls full shacl

Complexity of Validation NL-c PTIME-c PTIME-c NP-c
Table 2: Data complexity of the validation problem.

Such complexity results do not guarantee that efficient algorithms for the
tractable fragments can be found though. Moreover, none of the results considers
validation over an endpoint. One can nonetheless use these bounds as a guideline,
to devise validation procedures for each fragment. In particular, the NP upper
bound for the general case suggests that one can take advantage of existing tools
optimized for NP-complete problems. And it can indeed be shown that each of
the algorithms below is worst-case optimal for the fragments that it addresses.

4 Validation via a single query for non-recursive shacl

In this section, we address the question of whether validation can be performed
by evaluating a single sparql query. To state our results, we say that a schema
S can be expressed in sparql if there is a sparql query qS such that, for every
graph G, it holds that JqSKG = ∅ iff G is valid against S

We start with negative results. As shown above, validation for full shacl
is NP-hard in data complexity, whereas sparql query evaluation is tractable,
which immediately suggests that the former cannot be reduced to the latter. We
provide a stronger claim, namely that inexpressibility still holds for much milder
classes of schemas, and without complexity assumptions.

Proposition 2. There is a schema that is in both L+
∨ and Ls, and cannot be

expressed in sparql

On the positive side, one can express non-recursive shacl schemas in sparql:

Proposition 3. Every schema in Lnon-rec can be expressed in sparql

We provide the main intuition behind this observation (the full construction can
be found in appendix). Given a non-recursive shape schema S = 〈S, targ,def〉,
it is possible to associate to each shape s ∈ S a sparql query that retrieves the
target nodes of s violating the constraints for s. The query is of the form:

SELECT ?x WHERE { T (targ(s), ?x) FILTER NOT EXISTS { C(def(s), ?x) } }

where T (targ(s), ?x) is a BGP identical to targ(s) (with target nodes bound
to variable ?x), and C(def(s), ?x) is a BGP retrieving all nodes verifying def(s)
(again bound to variable ?x), defined by induction on the structure of def(s).
Then the query qS above is defined as the union of all such queries (one for each
s ∈ S) so that JqSKG = ∅ iff G is valid.

Example 2. As a simple example, consider the schema from Figure 1, To
make it non-recursive, the triples sh:property [ sh:inversePath dbo:director
; sh:Node :MovieShape ] can be dropped from shape :DirectorShape. Then we
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get:

T (targ(:MovieShape), ?x) = {?x a dbo:Film}

C(def(:MovieShape), ?x) = {?x dbo:imdbId ?y0 .?x dbo:director ?y1 .

?y1 dbo:birthDate ?y2 .FILTER NOT EXISTS{

?y1 dbo:birthDate ?y3 .FILTER(?y2 != ?y3)}}

Interestingly, if one uses the recursive sparql extension introduced in [15],
then both L+

∨ and Ls can be expressed:
Proposition 4. Every schema in L+

∨ or Ls can be expressed in recursive
sparql.

5 Validation via multiple queries for full shacl

This section provides an algorithm for validating arbitrary shacl shapes over a
sparql endpoint. The approach reduces validation to satisfiability of a proposi-
tional formula, possibly leveraging the optimization techniques of a SAT solver.

Given a graph G to validate against a shape schema S, the roadmap of this
solution is as follows. First, we define a normal form for shape schemas. This will
allow us to simplify the exposition. Next, we associate one sparql query to each
shape in a normalized schema. From the evaluation of these queries we construct
a set of rules of the form l0∧..∧ln → s(v), where each li is either si(vi) or ¬si(vi),
for some si ∈ S and vi ∈ VG . Intuitively, a rule such as s1(v1) ∧ ¬s2(v2)→ s(v)
means that, if node v1 conforms to shape s1 and node v2 does not conform to
shape s2, then node v conforms to shape s. These rules alone are not sufficient
for a sound validation algorithm, so we complement them with additional rules
(encoding in particular the targets, and the fact that a node cannot be inferred
to conform to a given shape). Finally, we show that G satisfies S if and only if
the set of constructed formulas is satisfiable.

The approach can handle validations with respect to either total or partial
assignments. For validation with respect to partial assignments the set of rules
must be satisfiable under 3-valued (Kleene’s) logic. For validation with respect to
total assignments the set of rules must be satisfiable under standard (2-valued)
propositional logic. And as shown in [11], if the schema is stratified, then both
notions of validation coincide.

Interestingly, the machinery presented in this section can also be use to design
a more efficient algorithm, for the three tractable fragments of shacl identified
in Section 3. This algorithm will be presented in Section 6.
Normal form.A shape schema 〈S, targ,def〉 is in normal form if the set S of
shape names can be partitioned into two sets S+ and SNEQ, such that for each
s ∈ S+ (resp. s ∈ SNEQ), def(s) verifies φs+ (resp. φsNEQ) in the following
grammar:

φs+ ::= α | ≥n r.α | φs+ ∧ φs+

φsNEQ ::= ¬EQ(r1, r2)

α ::= β | ¬β
β ::= > | I | s
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If φ = ¬EQ(r1, r2), then:
qφ = SELECT ?x WHERE {?x r1 w1 . ?x r2 w2 . FILTER (w1 != w2 )}

otherwise:
qφ = SELECT vars(φ) WHERE {triples(φ) FILTER (filters(φ))}

with:

vars(>) = {?x} triples(>) = V filters(>) = {?x = ?x}
vars(I) = {?x} triples(I) = V filters(I) = {?x = I}
vars(s) = {?x} triples(s) = V filters(s) = {?x = ?x}
vars(¬β) = {?x} triples(¬β) = V filters(¬β) = {!f | f ∈ filters(β)}
If φ is of the form φ1 ∧ φ2, then:

vars(φ) = vars(φ1) ∪ vars(φ2)
triples(φ) = triples(φ1) ∪ triples(φ2)
filters(φ) = filters(φ1) ∪ filters(φ2)

If φ is of the form ≥n r.φ′, then:
vars(φ) = vars(φ′) ∪ {w1, . . . , wn}
triples(φ) = {(?x r wi) | 1 ≤ i ≤ n}
filters(φ) = {f [?x/wi] | f ∈ filters(φ′), 1 ≤ i ≤ n} ∪ {wi!= wj | i 6= j}

Fig. 3: Inductive definition of the sparql query qdef(s), for each shape s in a
normalized schema, where V is a sparql subquery that retrieves all nodes in
the graph and f [w/w′] designates filter expression f , where each occurrence of
variable w is replaced by variable w′. sparql connectors ("." for triples and
AND for filters) are omitted for readability. All wi are fresh variables for each
occurrence.

It is easy to verify that a shape schema can be transformed in linear time
into an equivalent normalized one, by introducing fresh shape names (without
target). “Equivalent” here means that both schemas validate exactly the same
graphs, with exactly the same target violations.

sparql queries. Such normalization allows us to associate a sparql query
qdef(s) to each shape name in the normalized schema. Intuitively, the query qdef(s)

retrieves nodes that may validate def(s), and also the neighboring nodes to which
constraints may be propagated in order to satisfy def(s).

For instance, let def(s0) = (≥1 p1.s1) ∧ (≥1 p2.s2). Then:8

qdef(s0) = SELECT ?x ?y1 ?y2 WHERE {?x p1 ?y1 . ?x p2 ?y2 }

Figure 2 provides the definition of qdef(s), by induction on the structure of
def(s) (over each occurrence of a formula), based on the normal form.

Rule patterns. Let S = 〈S, targ,def〉 be a normalized schema. The next step
consists in generating a set of propositional rules, based on the evaluation of
the queries that have just been defined. To generate such formulas, we associate
a rule pattern pdef(s) to each shape s ∈ S. This rule pattern is of the form
l1 ∧ .. ∧ ln → s(?x), where each li is either >, si(wi) or ¬si(wi), for some shape

8 We omit the trivial FILTER (?y1 = ?y1 AND ?y2 = ?y2) for readability.
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pdef(s) =

(∧
body(def(s))

)
→ s(?x), with:

body(¬EQ(r1, r2)) = {>}
body(>) = {>}
body(I) = {>}
body(s′) = {s′(?x)}

body(¬>) = {>}
body(¬I) = {>}
body(¬s′) = {¬s′(?x)}

body(φ1 ∧ φ2) = body(φ1) ∪ body(φ2)

body(≥n r.φ) =

{
`[?x/w] | ` ∈ body(φ) and w ∈ vars(φ)

}

Fig. 4: Inductive definition of the rule pattern pdef(s). l[w1/w2] designates literal
l, where each occurrence of variable w1 is replaced by variable w2. vars(φ) is
defined in Figure 2

si ∈ S and variable w. Figure 3 provides the definition of pdef(s), by induction
on the structure of def(s).

Continuing the example above, if def(s0) = (≥1 p1.s1) ∧ (≥1 p2.s2), then:

qdef(s0) = SELECT ?x ?y1 ?y2 WHERE {?x p1 ?y1 . ?x p2 ?y2 }
pdef(s0) = s1(?y1) ∧ s2(?y2)→ s0(?x)

Each rule pattern pdef(s) is then instantiated with the answers to qdef(s) over
the sparql endpoint, which yields a set Jpdef(s)KG of propositional rules. For
instance, assume that the endpoint returns the following mappings for qdef(s0):

Jqdef(s0)KG = {{?x 7→ v0, ?y1 7→ v1, ?y2 7→ v2},
{?x 7→ v0, ?y1 7→ v3, ?y2 7→ v4}}

Then the set Jpdef(s0)KG of propositional rules is:

Jpdef(s0)KG = {s1(v1) ∧ s2(v2)→ s0(v0), s1(v3) ∧ s2(v4)→ s0(v0)}

Formally, Jpdef(s)KG is the set of propositional formulas obtained by replacing,
for each solution mapping γ ∈ Jqdef(s)KG , every occurrence of a variable w in
pdef(s) by γ(w).9 Then we use JpSKG to designate the set of all generated rules,
i.e.:

JpSKG =
⋃
s∈S

Jpdef(s)KG

We need more terminology. For each rule r = l1, .., ln → s(v), we call s(v)
the head of r, and {l1, .., ln} the body of r. Finally, if l is a literal, we use ¬l to
designate its negation, i.e. ¬l = ¬s(v) if l = s(v), and ¬l = s(v) if l = ¬s(v).
9 For some normalized schemas, it could happen that Jqdef(s)KG always retrieves all
nodes from G. This would be the case for example if def(s) = s1 ∧ s2. A simple
optimization technique here consists in not executing such queries, and instantiate
instead the rule pattern pdef(s) with all nodes retrieved by all other queries (and
bound to variable ?x).
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Additional formulas. So far, with a rule s1(v1) ∧ s2(v2) → s0(v0), we are
capturing the idea that v0 must be assigned shape s0 whenever v1 is assigned
s1 and v2 is assigned s2. But we also need to encode that the only way for v0

to be assigned shape s0 is to satisfy one of these rules. If there is just one rule
with s0(v0) as its head, we only need to extend our set of rules with s0(v0) →
s1(v1) ∧ s2(v2). But for more generality, we construct a second set Jp←S KG of
propositional formulas, as follows. For every literal s(v) that appears as the head
of a rule ψ → s(v) in JpSKG , let ψ1 → s(v), .., ψ` → s(v) be all the rules that
have s(v) as head. Then we extend Jp←S KG with the formula s(v)→ (ψ1∨ ..∨ψ`).

Next, we add the information about all target nodes, with the set JtSKG of
(atomic) formulas, defined by JtSKG = {s(v) | s ∈ S, s(v) ∈ targ(s)}.

Finally, we use a last set of formulas to ensure that the algorithm is sound
and complete. Intuitively, the query qdef(s) retrieves all nodes that may verify
shape s (bound to variable ?x). But evaluating qdef(s) also provides information
about the nodes that are not retrieved: namely that they cannot verify shape s.
A first naive idea is to extend our set of propositional formulas with every literal
¬s(v) for which Jqdef(s)KG does not contain any mapping where v is bound to ?x.
But this may require retrieving all nodes in G beforehand, which is inefficient.
One can do better, by considering only combinations of shapes and nodes that
are already in our rules. We thus construct another set JaSKG of facts. It contains
all literals of the form ¬s(v) such that: ¬s(v) or s(v) appears in some formula
in JpSKG ∪ JtSKG , and s(v) is not the head of any formula in JpSKG (i.e. there is
no rule of the form ψ → s(v) in JpSKG).

Analysis. Let ΓG,S = JpSKG ∪ Jp←S KG ∪ JtSKG ∪ JaSKG be the union of all the sets
of formulas constructed so far. We treat ΓG,S as a set of propositional formulas
over the set {s(v) | s ∈ S, v ∈ VG} of propositions. A first observation is that
this set of formulas is polynomial in the size of G. Perhaps more interestingly,
one can show that the set ΓG,S is also polynomial in the size of the evaluation
of all queries def(s) and targ(s). For a finer-grained analysis, let us measure the
size of a rule as the number of propositions it contains. From the construction,
we get the following upper bounds.

Proposition 5.
– The sizes of JpSKG, Jp←S KG and JaSKG are in O(

⋃
s∈SJqdef(s)KG).

– The size of JtSKG is in O(|
⋃
s∈SJtarg(s)KG |).

Hence, the size of the rules we need for inference is not directly dependent
on the size of the graph, but rather on the amount of targets and tuples that
the shacl schema selects to be validated.

The next result shows that validation can be reduced to checking whether
ΓG,S is satisfiable. “3-valued semantics” here refers to the semantics of Kleene’s
3-valued logic (for ∧,∨ and ¬) and where ψ1 → ψ2 is interpreted as ¬ψ1 ∨ ψ2.
Then a boolean formula ψ is satisfiable under boolean (resp. 3-valued) semantics
iff there is a boolean (resp. 3-valued) valuation of the atoms in ψ such that the
resulting formula evaluates to true under boolean (resp. 3-valued) semantics.

Proposition 6. For every graph G and schema S we have that:
– G is valid against S with respect to total assignments iff ΓG,S is satisfiable

under boolean semantics.
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– G is valid against S with respect to partial assignments iff ΓG,S is satisfiable
under 3-valued semantics.

Hence, we can check for validity of schemas over graphs by constructing ΓG,S
and checking satisfiability with a SAT solver. This algorithm matches the NP
upper bound in data complexity mentioned earlier, since each of Jqdef(s)KG and
Jtarg(s)KG can be computed in polynomial time, when S is considered to be
fixed, and thus the set ΓG,S of rules can be computed in polynomial time in data
complexity.

6 Optimized algorithm for tractable fragments

The propositional framework described in the previous section applies to arbi-
trary shape schemas. But it also allows us to devise a more efficient validation
algorithm for the tractable fragments Lnon-rec, L+

∨ and Ls. One could, in theory,
feed the same formulas as above to a SAT solver for these fragments. Instead,
the algorithm below performs this inference on-the-fly, without the need for a
solver. In addition, the validity of the graph may in some cases be decided before
evaluating all sparql queries (one per shape) against the endpoint.

The key property that enables this algorithm pertains to the notion of mini-
mal fixed-point assignment for shacl, defined in [11]. Due to space limitations,
we only rephrase the results relevant for this algorithm in our own terms.

Lemma 1. For every graph G and schema S in Lnon-rec, L+
∨ or Ls, there is a

partial assignment σG,SminFix such that:

1. σG,SminFix can be computed in polynomial time from ΓG,S , and
2. G is valid against S iff ¬s(v) /∈ σG,SminFix holds for every s(v) ∈ JtSKG

Algorithm. The algorithm shares similarities with the one of Section 5. It pro-
ceeds shape by shape, materializing the rules Jpdef(s)KG defined in Section 5. We
will see that these rules are sufficient to compute the assignment σG,SminFix.

The whole procedure is given by Algorithm 1. Variable S′ keeps track of the
shapes already processed, variable R stores all rules that are known to hold, and
σ is the assignment under construction. All arguments are passed by reference.
We use procedure selectShape (Line 3) to select from S the next shape s to
be processed. This selection can be non-deterministic, but as we will see, this
choice also opens room for optimization. All the necessary inference is performed
by procedure saturate, explained below. In the worst case, the loop terminates
when all shapes have been processed (i.e. when S′ = S, Line 7).

We now describe the inference carried out by procedure saturate, whose
detailed execution is given by Figure 4. heads(R) (Line 3 in procedure negate)
designates the sets of all heads appearing in R, whereas

⋃
bodies(R) (Line 2 in

procedure negate) designates the union of all rule bodies in R. The inference is
performed exhaustively by procedures negate and infer. Procedure negate
derives negative information. For any (possibly negated) atom s(v) that is either
a target or appears in some rule, we may be able to infer that s(v) cannot hold.
This is the case if s(v) has not been inferred already (i.e. s(v) 6∈ σ), if the query
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Algorithm 1 Tractable algorithm for validation

Input: Graph G, normalized schema S = 〈S,def, targ〉, set JtSKG of targets.
1: σ,R, S′ ← ∅
2: repeat
3: s← selectShape(S, S′)
4: S′ ← S′ ∪ {s}
5: R← R ∪ Jpdef(s)KG

6: saturate(σ,R, S′)
7: until S′ = S
8: saturate(σ,R, S)

qdef(s) has already been evaluated, and if there is no rule in R with s(v) as its
head. In such case, ¬s(v) is added to σ.

Procedure infer performs two types of inference. First, the obvious one: if R
contains a rule l1∧ · · · ∧ ln → s(v) and each of l1, .., ln has already been inferred,
then s(v) is inferred, and the rule is dropped. The second inference is negative: if
the negation of any li has already been inferred, then this rule cannot be applied
(to infer s(v)), so the entire rule is dropped.

1: procedure saturate(σ,R, S′)
2: repeat
3: σ′ ← σ
4: negate(σ,R, S′)
5: infer(σ,R)
6: until σ = σ′

7: end procedure

1: procedure infer(σ,R)
2: R′ ← ∅
3: for all l1 ∧ .. ∧ ln → s(v) ∈ R do
4: if {l1, .., ln} ⊆ σ then
5: σ ← σ ∪ {s(v)}
6: else if {¬l1, ..,¬ln} ∩ σ = ∅ then
7: R′ ← R′ ∪ {l1 ∧ .. ∧ ln → s(v)}
8: end for
9: R← R′

10: end procedure

1: procedure negate(σ,R, S′)
2: for all l ∈ JtSKG ∪

⋃
bodies(R) do

3: if (l = s(v) or l = ¬s(v)) and s ∈ S′ and s(v) 6∈ σ ∪ heads(R) then
4: σ ← σ ∪ {¬s(v)}
5: end for
6: end procedure

Fig. 5: Components of in-memory saturation in Algorithm 1

Let σG,Sfinal be the state of variable σ after termination. We show:

Proposition 7. σG,Sfinal = σG,SminFix

Interestingly, one can use this result to validate each target s(v) individually: if
¬s(v) ∈ σG,Sfinal, then v does not conform to shape s. Otherwise it conforms to it.

Optimization. An earlier termination condition may apply for Algorithm 1.
Indeed, we observe that during the execution, the assignment σ under construc-
tion can only be extended. Therefore the algorithm may already terminate if all
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#Queries Query exec. (ms) #Query answ. #Rules Total exec. (ms)
max total max total max

Validsingle

S2
non-rec 1 3596 3596 111113 111113 0 3596
S3

non-rec 1 3976 3976 111629 111629 0 3976
S4

non-rec 1 5269 5269 111906 111906 0 5269

S2
non-rec 3 858 956 37040 38439 49278 5305

Validrule

S3
non-rec 4 827 1149 37040 52122 50774 5553
S4

non-rec 7 1308 1944 39719 65175 64060 6857
S2

rec 5 912 1278 37040 59382 59852 5651
S3

rec 6 1489 3436 61355 146382 146104 8318
S4

rec 8 1530 4955 61355 186593 159597 11503

Table 3: Validation using Validrule for all 6 schemas, and Validsingle for non-
recursive schemas, on DBPfull. Here # Queries is the number of executed queries,
Query exec. max (resp. total) is the maximum execution time for a query (resp.
total time for all queries) in milliseconds, #Query answ. max (resp. total) is the
max. number of solution mappings for a query (resp. total for all queries) #Rules
max is the max. number of rules in memory during the execution, and Total exec. is
the overall execution time in milliseconds

targets have been inferred to be valid or invalid, i.e. if s(v) ∈ σ or ¬s(v) ∈ σ
for every target s(v) ∈ JtSKG . This means that one should also try to process
the shapes in the best order possible. For instance, in the experiments reported
below, function selectShape (Line 3) first prioritizes the shapes that have a
target definition, then the shapes referenced by these, and so on, in a depth-first
fashion. Such an ordering offers another advantage, which pertains to traceabil-
ity: when signaling to the user the reason why a given target is violated, it is
arguably more informative to return an explanation at depth n than at depth
n + q. Therefore this breadth-first strategy guarantees that one of the "most
immediate" explanations for a constraint violation is always found.

7 Evaluation

We implemented a slightly optimized version of Algorithm 1, A prototype is
available online [? ], together with source code and execution and build instruc-
tions.
Shape schemas. We designed two sets of simple shapes, called M non-rec and
M rec below. These shapes pertain to the domain of cinema (movies, actors,
etc.), based on patterns observed in DBPedia [1], similarly to the shapes of
Figure 1. They were designed to cover several cases discussed in this article
(shape reference, recursion, etc.). All shapes are available online ([? ]). The first
set M non-rec contains shape references, but is non-recursive, whereas the second
set M rec is recursive. Out of M non-rec, we created 3 shape schemas S2

non-rec,
S3

non-rec and S4
non-rec, containing 2, 3 and 4 shapes respectively. Similarly for M 2,

we created 3 shape schemas S2
rec, S3

rec and S4
rec.

Data. We used the latest version of DBPedia (2016-10), specifically the datasets
“Person Data”, “Instance Types”, “Labels”, “Mappingbased Literals” and “Map-
pingbased Objects” (in English), downloadable from [1], with around 61 million
triples (7.7 GB in .ttl format). We denote this dataset as DBPfull. The number
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of targets to be validated in DBPfull is 111938. To test the scalability of the ap-
proach, we also produced four samples by randomly selecting 10%, 20% and 50%
of triples in DBPfull. We denote these datasets as DBP10, DBP20 and DBP50.

Setting. We use Validrule to designate our implementation of the rule-based
procedure described by Algorithm 1. The implementation is essentially identi-
cal, but with a relaxed normal form for the input schema, and improvements
geared towards increasing the selectivity of some queries. The ordering of query
evaluation (Function selectShape in Algorithm 1, Line 3) was based on the
dependency graph, in a breadth-first fashion, starting with the only shape with
non-empty target definition, then followed by the shapes it references (if not
evaluated yet), etc. Validsingle designates validation performed by executing a
single query, as described in Section 4. This approach is only applicable to the
non-recursive shape schemas S2

non-rec, S3
non-rec and S4

non-rec.

We used Virtuoso v7.2.4 as triplestore. Queries were run on a 24 cores Intel
Xeon CPU at 3.47GHz, with a 5.4TB 15k RPM RAID-5 hard-drive cluster
and 108 GB of RAM. Only 1GB of RAM was dedicated to the triplestore for
caching and intermediate operations. In addition, the OS page cache was flushed
every 5 seconds, to ensure that the endpoint could only exploit these 1GB for
caching. These precautions ensure that most of the dataset cannot be cached,
which would artificially speed up query execution times.

Results. Table 3 provides statistics for the validation of DBPfull against all
schemas. A first observation is that execution times remained very reasonable
(less that 12 seconds) for a complete validation, given the high number of tar-
gets (111938) and the size of the dataset. Another immediate observation is that
for the non-recursive schemas, Validsingle consistently outperformed Validrule.
However, execution times for both approaches remain in the same order of mag-
nitude. Based on these results, the rule-based approach appears as a relatively
small price to pay for an algorithm that is not only more robust (i.e. can handle
recursion), but also guarantees traceability of each shape violation (whereas the
single-query approach essentially uses the endpoint as a black-box). Figure 5
(a) illustrates scalability of Validsingle and Validrule. The focus is on scalabil-
ity w.r.t to the size of the graph (data complexity) rather than in the size of
the schema. The execution times are given for the different samples of DBPe-
dia (DBP10, DBP20, DBP50 and DBPfull) against the largest shapes schemas
(S4

non-rec and S4
rec). The main observation is that for Validrule, execution time

increased significantly faster for the recursive schema than for the non-recursive
one. Finally, Figure 5 b describes how execution time was split between query
answering, saturation and other tasks (mostly grounding rules with solution
mappings), for Validrule, for each Sirec and for each sample of DBPedia. An
important observation here is that the proportion of execution time dedicated
to query answering increased with the data and number of shapes, even when
the number of rules in memory was arguably large (≥ 100000 for S3

rec and S4
rec

with ). This suggests that the extra cost induced by in-memory inference during
the execution of Algorithm 1 may not be a bottleneck.
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(a) Execution times against S4
non-rec

with Validsingle, and against S4
non-rec

and S4
rec with Validrule.

(b) Repartition of execution time
against Srec, with Validrule. “2, 3”
and “4” stand for S2

rec,S3
rec and S4

rec.

Fig. 6: Scalability over DBP10, DBP20, DBP50 and DBPfull

8 Related work

TopBraid Composer [8] allows validating an rdf graph against a non-recursive
shacl schema via sparql queries, similarly to the approach described in Sec-
tion 4). The tool was initially developed for the language SPIN, which largely in-
fluenced the design of the shacl specification. A list of other implementations of
shacl validation can be found at [? ] (together with unit tests for non-recursive
shapes). To our knowledge, none of these can validate recursive constraints via
sparql queries, with the exception of Shaclex [5], already mentioned ??.

ShEx [16, 10] is another popular constraint language for rdf, which shares
many similarities with shacl, but is inspired by XML schema languages. A
semantics for (stratified) recursive ShEx schemas was proposed in [10], which
differs from the one followed in this article for shacl. ShEx validation is sup-
ported by several open-source implementations (like shex.js [6] or Shaclex [5]),
either in memory or over a triple-store. To our knowledge, no procedure for
validating recursive ShEx via sparql queries has been defined or implemented
yet.

Prior to ShEx or shacl, a common approach to define expressive constraints
over rdf graphs was to use OWL axioms with (some form of) closed-world
assumption (CWA) [? 14] However, OWL is originally designed to model incom-
plete knowledge (with the open-world assumption), therefore not well-suited to
express constraints. In terms of implementation, [14] proposed an encoding of
such constraints into complex logical programs, but the usage made of OWL
does not allow for recursive constraints. Similarly, Stardog [7] offers the possibil-
ity to write constraints as OWL axioms under CWA, which are then converted
to sparql queries. In contrast to shacl though, these constraints are “local”, i.e
cannot refer to other constraints. Stardog also has a limited support for shacl
validation, currently in beta phase.

Finally, writing non-recursive constraints natively as sparql queries is a
relatively widespread approach, for instance to assess data quality, like in [?
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], and the shacl specification also allows defining constraints in this way (in
addition to the “core constraint components” considered in this article).

9 Conclusion and perspectives

We hope that this article may provide guidelines for future implementations
of (possibly recursive) shacl constraint validation via sparql queries. As for
delegating validation to query evaluation, we showed the limitation of the ap-
proach, opened up an alternative in terms of recursive sparql, and provided (in
the extended version of this article) a full translation from non-recursive shacl
to sparql. Regarding validation via queries, but with additional (in-memory)
computation, we devised and evaluated and algorithm for three tractable frag-
ments of shacl, with encouraging performances. This strategy can also still be
largely optimized, generating more selective queries and/or reducing the cost of
in-memory inference. A natural extension of this work is the application to ShEx
schemas, even though the semantics for recursive ShEx proposed in [10] differs
from the one followed in this paper. Finally, a key feature of a constraint vali-
dation engine is the ability to provide explanations for target violations. Their
number is potentially exponential though, so a natural continuation of this work
is to define some preference over explanations, and devise algorithms that return
an optimal one, without sacrificing performance.
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